If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-182+x^2+x=0
a = 1; b = 1; c = -182;
Δ = b2-4ac
Δ = 12-4·1·(-182)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-27}{2*1}=\frac{-28}{2} =-14 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+27}{2*1}=\frac{26}{2} =13 $
| 21x+6x=0 | | 6-5r+14+10r-(-5)=0 | | 4x+7=1-10 | | X*2-55x+750=0 | | -7/8x=-9/16 | | 2(5y-4)=5(3y+7) | | 0-4x=10 | | 23-(2x+5)=3(x+2)+x | | x/16=0.839 | | 6(r-7)+1=7(r+3)-25 | | 16/x=0.839 | | 6(y-3)=20 | | 4a+15=-13 | | 9^(-8x)=12 | | 9^-8x=12 | | 9^(x+3)=15 | | 20=2*3.1415926536*x | | (s+4)^2=2s | | 7.48n+3.33=-3.11n+6.49 | | (x+2)^2=3+10 | | 2z-3(z+1)=-(5z+9)+z | | .75(12y+8)-3(4y+3)=0 | | 8x-13+7x=180 | | 6y-4y=9 | | 3a-2(a-7)=3+2a | | 3(z+6)=6+z | | 180=75+x+52+67+x | | 8-c=7+5c | | 4×+2x+9=39 | | x=5x+20° | | -17=5+2u | | 2+x7=4 |